
Modeling and Control of
Complex Nonlinear Engineering Systems

Final Exam 2021–2022, Monday 11 April 2022, 8:30 – 10:30

• The exam is open book, meaning that the use of the course reader(s) as well as your written
notes is allowed. The use of electronic devices is not allowed.

• The exam comprises four problems. Note that Problem 4 comes in two versions: please
answer the problem according to your educational program (IEM/ME versus AM).

• Different from usual, the exam is for two hours.

Problem 1 (8 + 10 + 4 + 8 = 30 points)

Consider the nonlinear systemẋ1ẋ2
ẋ3

 =

 x2 + x22 + x23
x3 + sin(x1 − x3)

x23

+

1
0
1

u. (1)

(a) Characterize the points x0 for which the system is locally strongly accessible at x0.

(b) Is the system feedback linearizable to a controllable linear system?

For the remainder of this problem, consider the output

y = x2. (2)

(c) What is the relative degree of (1) with output (2)?

(d) Using input-output linearization with output (2), determine a control law that achieves
tracking of the reference trajectory

yref(t) = cos(ωt) for some ω > 0.

Problem 2 (5 + 5 = 10 points)

Consider the scalar nonlinear system

ẋ = x2 + u. (3)

To achieve feedback linearization, one can propose the feedback

u = −x2 − x+ v, (4)

where v is a virtual input. For v = 0, the closed-loop system ẋ = −x resulting from (3) and (4)
has a globally asymptotically stable equilibrium at x = 0.

However, it turns out that, due to modelling errors, the actual nonlinear system reads

ẋ = (1 + ε)x2 + u, (5)

for some small but nonzero ε.

(a) Show that, for the perturbed closed-loop system resulting from (5) and (4), there exist initial
conditions x0 for which the resulting trajectory x(t) grows without bound (i.e., the perturbed
closed-loop system does not have a globally asymptotically stable equilibrium).

(b) Is it possible to guarantee stability of the origin for the perturbed closed-loop system by
using a linearizing feedback different from (4)? If so, give such feedback. Note that we
assume that ε is unknown.
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Problem 3 (10 + 10 = 20 points)

Consider a translational oscillator with rotational actuator (TORA) system depicted below.

q1: horizontal displacement of the cart
q2: angular displacement of the pendulum
m1: mass of the cart
m2: mass of the pendulum
I: moment of inertia of m2

k1: spring constant
τ : input torque
Fd: external force

The total energy of the system is given by

H(q1, q2, p1, p2) =
1

2

[
p1
p2

]T
M(q2)−1

[
p1
p2

]
+

1

2
k1q

2
1 ,

with

M(q2) =

[
m1 +m2 −m2r cos q2
−m2r cos q2 I +m2r

2

]
,

and where p1 and p2 are the translational and rotational momenta variables, respectively. The
state space equations of this system can be written in the short-hand form

q̇ =
∂H

∂p
(q, p),

ṗ = −∂H
∂q

(q, p) + u,

(6)

with

u =

[
Fd

τ

]
, q =

[
q1
q2

]
, p =

[
p1
p2

]
.

Note that q̇ = M(q2)−1p. For reference, the full state space equations are given by

q̇1 =
(I +m2r

2)p1 + (m2r cos q2)p2
(m1 +m2)(I +m2r2)−m2r2 cos2 q2

q̇2 =
(m2r cos q2)p1 + (m1 +m2)p2

(m1 +m2)(I +m2r2)−m2r2 cos2 q2

ṗ1 = −k1x1 + Fd

ṗ2 = − ∂

∂q2

(
(I +m2r

2)p21 + 2(m2r cos q2)p1p2 + (m1 +m2)p22
(m1 +m2)(I +m2r2)−m2r2 cos2 q2

)
+ τ.

Hint: derivations in the following questions are easier using the short-hand form (6).

(a) Use the total energy H to determine the passive output corresponding to the input u.
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(b) Introduce the feedback control

u = −
[
d1 0
0 d2

]
M(q2)−1p+ v,

with d1 ≥ 0, d2 ≥ 0 and where v = [ v1 v2 ]T is a new input. Is H still a storage function
for showing that the input-output pair of (a) is passive for the closed loop system? Please
motivate your answer.

Problem 4 (for IEM/ME students) (5 + 7 + 5 + 8 + 5 = 30 points)

C(·)
I

L

R(·)

Consider the RLC circuit above with nonlinear capacitor and resistor. It can be modelled as[
Q̇

İ

]
=

[
I

−L−1C(Q)− L−1R(I)

]
, (7)

where Q is the charge of the capacitor and I the current through the network; L > 0 is the
inductance constant. Moreover, the nonlinear capacitance function C : R → R and resistance
function R : R→ R are continuous and assumed to satisfy

QC(Q) > 0 ∀Q 6= 0,

IR(I) > 0 ∀ I 6= 0.

In the remainder of this problem, we will use the notation x =
[
Q I

]T
.

(a) Show that x = 0 is the unique equilibrium of (7).

As we are interested in stability of the equilibrium x = 0, introduce the function

V (x) = 1
2LI

2 +

∫ Q

0

C(q) dq. (8)

(b) Show that V qualifies as a suitable Lyapunov function candidate.

(c) Using V , prove that the equilibrium x = 0 is stable (in the sense of Lyapunov).

(d) Is the equilibrium x = 0 also asymptotically stable?

(e) Provide a condition (in terms of the functions C and/or R) under which the equilibrium
x = 0 is globally asymptotically stable.
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Problem 4 (for AM students) (15 + 15 = 30 points)

Consider N nonlinear systems of the form

ẋi = fi(xi, ui),

yi = hi(xi),

with state xi(t) ∈ Rni and scalar input ui(t) ∈ R and output yi(t) ∈ R, with i = 1, 2, . . . , N . In
addition, fi(0, 0) = 0 and hi(0) = 0 hold.

For each system i, we assume furthermore that it is zero-state observable and has an L2-gain
bounded by γi, i.e., it is dissipative with respect to the supply rate

si(ui, yi) = 1
2γ

2
i ‖ui‖2 − 1

2‖yi‖
2.

for some differentiable storage function Si. We collect states, inputs, outputs, and L2 gain bounds
in the vectors and diagonal matrix

x =

x1...
xN

 , u =

u1...
uN

 , y =

 y1...
yN

 , Γ =

γ1 0
. . .

0 γN

 ,
respectively, and assume that the N nonlinear systems are interconnected as

u = Ky

for some matrix K ∈ RN×N .

(a) Assume that there exists a diagonal positive definite matrix P such that

(ΓK)TP (ΓK)− P ≺ 0, (9)

where X ≺ 0 indicates that the matrix X is negative definite. Show that the origin x = 0 is
an asymptotically stable equilibrium point for the interconnected system.

Hint. Write

P =

p1 0
. . .

0 pN


and consider the function V (x) =

∑N
i=1 piSi(xi).

In the remainder of this problem, we extend the interconnection to include an external input v
and external output z as

u = Ky + Lv, z = My.

(b) Using the same function V as in (a) as a storage function, give a sufficient condition for
guaranteeing that the interconnected system is dissipativive with respect to

s(v, z) = 1
2θ

2‖v‖2 − 1
2‖z‖

2,

i.e., has an L2-gain bounded by θ with respect to the external input v and output z. Specif-
ically, give the sufficient condition in terms of a matrix inequality in a similar spirit as (9).

(10 points free)
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