Modeling and Control of Complex Nonlinear Engineering Systems

Final Exam 2021-2022, Monday 11 April 2022, 8:30-10:30

- The exam is open book, meaning that the use of the course reader(s) as well as your written notes is allowed. The use of electronic devices is not allowed.
- The exam comprises four problems. Note that Problem 4 comes in two versions: please answer the problem according to your educational program (IEM/ME versus AM).
- Different from usual, the exam is for two hours.

Problem 1

Consider the nonlinear system

$$
\left[\begin{array}{c}
\dot{x}_{1} \tag{1}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+x_{2}^{2}+x_{3}^{2} \\
x_{3}+\sin \left(x_{1}-x_{3}\right) \\
x_{3}^{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u .
$$

(a) Characterize the points x_{0} for which the system is locally strongly accessible at x_{0}.
(b) Is the system feedback linearizable to a controllable linear system?

For the remainder of this problem, consider the output

$$
\begin{equation*}
y=x_{2} . \tag{2}
\end{equation*}
$$

(c) What is the relative degree of (1) with output (2)?
(d) Using input-output linearization with output (2), determine a control law that achieves tracking of the reference trajectory

$$
y_{\mathrm{ref}}(t)=\cos (\omega t) \text { for some } \omega>0
$$

Problem 2
Consider the scalar nonlinear system

$$
\begin{equation*}
\dot{x}=x^{2}+u . \tag{3}
\end{equation*}
$$

To achieve feedback linearization, one can propose the feedback

$$
\begin{equation*}
u=-x^{2}-x+v \tag{4}
\end{equation*}
$$

where v is a virtual input. For $v=0$, the closed-loop system $\dot{x}=-x$ resulting from (3) and (4) has a globally asymptotically stable equilibrium at $x=0$.

However, it turns out that, due to modelling errors, the actual nonlinear system reads

$$
\begin{equation*}
\dot{x}=(1+\varepsilon) x^{2}+u \tag{5}
\end{equation*}
$$

for some small but nonzero ε.
(a) Show that, for the perturbed closed-loop system resulting from (5) and (4), there exist initial conditions x_{0} for which the resulting trajectory $x(t)$ grows without bound (i.e., the perturbed closed-loop system does not have a globally asymptotically stable equilibrium).
(b) Is it possible to guarantee stability of the origin for the perturbed closed-loop system by using a linearizing feedback different from (4)? If so, give such feedback. Note that we assume that ε is unknown.

Consider a translational oscillator with rotational actuator (TORA) system depicted below.

q_{1} : horizontal displacement of the cart
q_{2} : angular displacement of the pendulum
m_{1} : mass of the cart
m_{2} : mass of the pendulum
$I: \quad$ moment of inertia of m_{2}
k_{1} : spring constant
τ : input torque
$F_{d}: \quad$ external force

The total energy of the system is given by

$$
H\left(q_{1}, q_{2}, p_{1}, p_{2}\right)=\frac{1}{2}\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]^{\mathrm{T}} M\left(q_{2}\right)^{-1}\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+\frac{1}{2} k_{1} q_{1}^{2}
$$

with

$$
M\left(q_{2}\right)=\left[\begin{array}{cc}
m_{1}+m_{2} & -m_{2} r \cos q_{2} \\
-m_{2} r \cos q_{2} & I+m_{2} r^{2}
\end{array}\right],
$$

and where p_{1} and p_{2} are the translational and rotational momenta variables, respectively. The state space equations of this system can be written in the short-hand form

$$
\begin{align*}
\dot{q} & =\frac{\partial H}{\partial p}(q, p) \\
\dot{p} & =-\frac{\partial H}{\partial q}(q, p)+u \tag{6}
\end{align*}
$$

with

$$
u=\left[\begin{array}{c}
F_{d} \\
\tau
\end{array}\right], \quad q=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right], \quad p=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right] .
$$

Note that $\dot{q}=M\left(q_{2}\right)^{-1} p$. For reference, the full state space equations are given by

$$
\begin{aligned}
\dot{q}_{1} & =\frac{\left(I+m_{2} r^{2}\right) p_{1}+\left(m_{2} r \cos q_{2}\right) p_{2}}{\left(m_{1}+m_{2}\right)\left(I+m_{2} r^{2}\right)-m^{2} r^{2} \cos ^{2} q_{2}} \\
\dot{q}_{2} & =\frac{\left(m_{2} r \cos q_{2}\right) p_{1}+\left(m_{1}+m_{2}\right) p_{2}}{\left(m_{1}+m_{2}\right)\left(I+m_{2} r^{2}\right)-m^{2} r^{2} \cos ^{2} q_{2}} \\
\dot{p}_{1} & =-k_{1} x_{1}+F_{d} \\
\dot{p}_{2} & =-\frac{\partial}{\partial q_{2}}\left(\frac{\left(I+m_{2} r^{2}\right) p_{1}^{2}+2\left(m_{2} r \cos q_{2}\right) p_{1} p_{2}+\left(m_{1}+m_{2}\right) p_{2}^{2}}{\left(m_{1}+m_{2}\right)\left(I+m_{2} r^{2}\right)-m^{2} r^{2} \cos ^{2} q_{2}}\right)+\tau .
\end{aligned}
$$

Hint: derivations in the following questions are easier using the short-hand form (6).
(a) Use the total energy H to determine the passive output corresponding to the input u.
(b) Introduce the feedback control

$$
u=-\left[\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right] M\left(q_{2}\right)^{-1} p+v
$$

with $d_{1} \geq 0, d_{2} \geq 0$ and where $v=\left[v_{1} v_{2}\right]^{\mathrm{T}}$ is a new input. Is H still a storage function for showing that the input-output pair of (a) is passive for the closed loop system? Please motivate your answer.

Problem 4 (for IEM/ME students)

$$
(5+7+5+8+5=30 \text { points })
$$

Consider the RLC circuit above with nonlinear capacitor and resistor. It can be modelled as

$$
\left[\begin{array}{c}
\dot{Q} \tag{7}\\
\dot{I}
\end{array}\right]=\left[\begin{array}{c}
I \\
-L^{-1} C(Q)-L^{-1} R(I)
\end{array}\right],
$$

where Q is the charge of the capacitor and I the current through the network; $L>0$ is the inductance constant. Moreover, the nonlinear capacitance function $C: \mathbb{R} \rightarrow \mathbb{R}$ and resistance function $R: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and assumed to satisfy

$$
\begin{aligned}
Q C(Q)>0 & \forall Q \neq 0 \\
I R(I)>0 & \forall I \neq 0 .
\end{aligned}
$$

In the remainder of this problem, we will use the notation $x=\left[\begin{array}{l}Q\end{array}\right]^{\mathrm{T}}$.
(a) Show that $x=0$ is the unique equilibrium of (7).

As we are interested in stability of the equilibrium $x=0$, introduce the function

$$
\begin{equation*}
V(x)=\frac{1}{2} L I^{2}+\int_{0}^{Q} C(q) \mathrm{d} q \tag{8}
\end{equation*}
$$

(b) Show that V qualifies as a suitable Lyapunov function candidate.
(c) Using V, prove that the equilibrium $x=0$ is stable (in the sense of Lyapunov).
(d) Is the equilibrium $x=0$ also asymptotically stable?
(e) Provide a condition (in terms of the functions C and/or R) under which the equilibrium $x=0$ is globally asymptotically stable.

Consider N nonlinear systems of the form

$$
\begin{aligned}
\dot{x}_{i} & =f_{i}\left(x_{i}, u_{i}\right), \\
y_{i} & =h_{i}\left(x_{i}\right),
\end{aligned}
$$

with state $x_{i}(t) \in \mathbb{R}^{n_{i}}$ and scalar input $u_{i}(t) \in \mathbb{R}$ and output $y_{i}(t) \in \mathbb{R}$, with $i=1,2, \ldots, N$. In addition, $f_{i}(0,0)=0$ and $h_{i}(0)=0$ hold.

For each system i, we assume furthermore that it is zero-state observable and has an L_{2}-gain bounded by γ_{i}, i.e., it is dissipative with respect to the supply rate

$$
s_{i}\left(u_{i}, y_{i}\right)=\frac{1}{2} \gamma_{i}^{2}\left\|u_{i}\right\|^{2}-\frac{1}{2}\left\|y_{i}\right\|^{2} .
$$

for some differentiable storage function S_{i}. We collect states, inputs, outputs, and L_{2} gain bounds in the vectors and diagonal matrix

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right], \quad u=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{N}
\end{array}\right], \quad y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right], \quad \Gamma=\left[\begin{array}{ccc}
\gamma_{1} & & 0 \\
& \ddots & \\
0 & & \gamma_{N}
\end{array}\right]
$$

respectively, and assume that the N nonlinear systems are interconnected as

$$
u=K y
$$

for some matrix $K \in \mathbb{R}^{N \times N}$.
(a) Assume that there exists a diagonal positive definite matrix P such that

$$
\begin{equation*}
(\Gamma K)^{\mathrm{T}} P(\Gamma K)-P \prec 0, \tag{9}
\end{equation*}
$$

where $X \prec 0$ indicates that the matrix X is negative definite. Show that the origin $x=0$ is an asymptotically stable equilibrium point for the interconnected system.
Hint. Write

$$
P=\left[\begin{array}{ccc}
p_{1} & & 0 \\
& \ddots & \\
0 & & p_{N}
\end{array}\right]
$$

and consider the function $V(x)=\sum_{i=1}^{N} p_{i} S_{i}\left(x_{i}\right)$.
In the remainder of this problem, we extend the interconnection to include an external input v and external output z as

$$
u=K y+L v, \quad z=M y .
$$

(b) Using the same function V as in (a) as a storage function, give a sufficient condition for guaranteeing that the interconnected system is dissipativive with respect to

$$
s(v, z)=\frac{1}{2} \theta^{2}\|v\|^{2}-\frac{1}{2}\|z\|^{2},
$$

i.e., has an L_{2}-gain bounded by θ with respect to the external input v and output z. Specifically, give the sufficient condition in terms of a matrix inequality in a similar spirit as (9).

[^0]
[^0]: (10 points free)

